Below you will find pages that utilize the taxonomy term “PyTorch”
Posts
AMD Radeon GPU上でPyTorch-ROCm
Introduction PyTorchがROCm2.1にて対応!AMD Radeon GPU上で動かすためのインストールガイド。
Installation AMDGPUドライバ 2.1にてPyTorch1.x.xに対応 公式にてPyTorchが正式に対応されたと発表がされました。 https://rocm.github.io/dl.html
Deep Learning on ROCm TensorFlow: TensorFlow for ROCm – latest supported version 1.13
MIOpen: Open-source deep learning library for AMD GPUs – latest supported version 1.7.1
PyTorch: PyTorch for ROCm – latest supported version 1.0
インストール困難問題(2019/03/01) Officialページには、Dockerベースのインストール方法のみが記述されているため、スクラッチからインストールする方法がドキュメントベースでサポートされていません。
https://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html 更にこちらのページにインストール方法の詳細が記載されていますが、スクラッチからのインストール方法がやはり欠如しており、
python tools/amd_build/build_pytorch_amd.py python tools/amd_build/build_caffe2_amd.py
hippify(CUDAコードをHIPコードへ変換する)部分も実際には違っています。
では、どうやってインストールするか?ですが、 https://raw.githubusercontent.com/wiki/ROCmSoftwarePlatform/pytorch/Dockerfile にてDockerfileが定義されていましたので、これをベースに最新のインストール方法を模索していきます。
結果的に取りまとめたインストーラーを先に提示します。 Ubuntu16.04 + Python3.5 or Python3.6ベースのAMDGPU ROCm-PyTorch1.1.0aのインストール方法がこちら。
curl -sL http://install.aieater.com/setup_pytorch_rocm | bash - 現在インストールする場合、グラフィックスカードの種類毎にビルドし直さなければなりません。 gfx806(RX550/560/570/580) gfx900(VegaFrontierEdition/Vega56/Vega64/WX9100/MI25) gfx906(RadeonVII/MI50/MI60) 上記のスクリプトはインストール途中で選択肢が出てきますので、上記のグラフィックスカードに合わせて指定を行ってください。